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ABSTRACT
A new perturbation initialization method is used to quantify error growth due to inaccuracies of the forecast model initial
conditions in a quasigeostrophic box ocean model describing a wind-driven double gyre circulation. This method is based
on recent analytical results on Lagrangian alignment dynamics of the perturbation velocity vector in quasigeostrophic
flows. More specifically, it consists in initializing a unique perturbation from the sole knowledge of the control flow
properties at the initial time of the forecast and whose velocity vector orientation satisfies a Lagrangian equilibrium
criterion. This Alignment-based Initialization method is hereafter denoted as the AI method.

In terms of spatial distribution of the errors, we have compared favorably the AI error forecast with the mean error
obtained with a Monte-Carlo ensemble prediction. It is shown that the AI forecast is on average as efficient as the
error forecast initialized with the leading singular vector for the palenstrophy norm, and significantly more efficient
than that for total energy and enstrophy norms. Furthermore, a more precise examination shows that the AI forecast is
systematically relevant for all control flows whereas the palenstrophy singular vector forecast leads sometimes to very
good scores and sometimes to very bad ones.

A principal component analysis at the final time of the forecast shows that the AI mode spatial structure is comparable
to that of the first eigenvector of the error covariance matrix for a “bred mode” ensemble. Furthermore, the kinetic energy
of the AI mode grows at the same constant rate as that of the “bred modes” from the initial time to the final time of
the forecast and is therefore characterized by a sustained phase of error growth. In this sense, the AI mode based on
Lagrangian dynamics of the perturbation velocity orientation provides a rationale of the “bred mode” behavior.

1. Introduction

One major source of numerical error forecast in meteorology and
oceanography comes from inaccuracies in initial conditions. The
divergence of trajectories of models with initially close states is
well-known since the pioneering works of Thompson (1957)
and Lorenz (1965) in a meteorological context. In order to quan-
tify error growth after a finite time T different strategies have
been proposed. Leith (1974) used a Monte-Carlo approach (MC
method hereafter): a large ensemble of N random perturbations
is generated and added to an initial state to construct an ensemble
of N nearby initial conditions, each member of the ensemble be-
ing the initial state of a simulation which is integrated for a finite
time T. The result of each simulation after T can be considered
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as a possible state and can be used to diagnose the average error
growth. The MC method is computationally expensive because
the number N of needed perturbations is apriori of the order of
the number of degrees of freedom of the system and is thus not
possible for an operational numerical weather prediction (NWP)
model.

We can reduce the size of the ensemble by generating per-
turbations which are dynamically relevant instead of random.
This is what is presently used in different operational NWP
centers and two ensemble strategies are well-known (Ensemble
Prediction Methods): at the European Centre for Medium-Range
Weather Forecast (ECMWF) the ensemble is composed of per-
turbations that will grow most rapidly for the energy norm, this is
the Singular Vector method (Buizza and Palmer, 1995; Molteni
et al., 1996); at the National Center for Environmental Prediction
(NCEP), the perturbations are created by the so-called breeding
technique (Toth and Kalnay, 1993, 1997) and represent structures
that have grown most rapidly in the past. At the Canadian Mete-
orological Centre, another strategy based on assimilation cycles
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is used which is called the Perturbed Observation Method and
consists in randomly sampling from the probability distribution
of analysis errors (Houtekamer and Derome, 1995; Houtekamer
et al., 1996; Hamill et al., 2000). Legras and Vautard (1996)
show that the singular modes and the bred modes are related
respectively to the forward Lyapunov modes and the backward
Lyapunov modes. Even if they are not used as ensemble mem-
bers in operational centers, the (backward) Lyapunov modes can
have the same properties as the mean error growth determined by
a Monte-Carlo approach as Vannitsem and Nicolis (1997) have
shown in a quasi-geostrophic model. Other types of perturbations
can be dynamically significant like the finite-time normal modes
(eigenvectors of the tangent linear resolvent): for long time pe-
riods they resemble singular modes that have evolved; or the
adjoint finite-time normal modes (eigenvectors of the adjoint of
the tangent linear resolvent): for long optimization time periods
they resemble singular modes (see Frederiksen, 1997, 2000). In
an oceanographical context, research on predictability problems
and error growth has not been as intensive but recently Moore
(1999) studied in a model of the Gulf Stream the dynamics of
error growth with ensemble forecasts and showed that singular
modes and perturbations related to adjoint finite-time normal
modes are more efficient for perturbing ensemble members.

Present approaches in operational centers are thus based on en-
semble prediction. A recent paper from Patil et al. (2001) shows
that, in global atmospheric models, few “bred modes” are nec-
essary to represent the chaotic behavior of the atmosphere, and
thus the number of ensemble members needed is much smaller
than expected. More specifically, they define, at each point of the
globe, a subspace from the local structures of the “bred modes”
around this point. The authors found that in most regions, the
“bred mode” subspace dimension is low. Similar results are pre-
sented in the recent works of Snyder and Hamill (2003) and
Snyder et al. (2003). In these papers, it is shown that the spatial
structures of initially random perturbations that have evolved on
a time scale of O(1 day) are comparable to the Lyapunov vectors
structures and they are constrained in terms of both spatial scale
and location by the unperturbed flow properties; in particular,
their potential vorticity (PV) are concentrated where the gradi-
ent of the unperturbed flow PV is large. The above results are
compatible with those found by Rivière et al. (2003) (referred to
as RHK in the following) on alignment properties of perturba-
tions that have grown in the past. In the latter paper, it is shown
in a barotropic quasigeostrophic context, that the streamfunc-
tion isolines directions for initially random perturbations that
have evolved for a finite time, converge at each spatial location
toward a most probable direction. The most probable direction is
deduced from an analytical analysis of the Lagrangian equilibria
of the perturbation velocity vector orientation and can be ana-
lytically diagnosed from the knowledge of the reference unper-
turbed flow structure. Perturbations that have grown in the past
(e.g. bred modes, Lyapunov vectors or initially random perturba-
tions that have evolved for a finite time) are not only constrained
in terms of spatial scale and energy by the control flow but also

in terms of alignment properties. The first objective of the paper
is to relate more closely the notion of sustainable error growth
characteristic of the perturbations that have grown in the past to
the most probable direction determined in RHK.

The second objective is to test a new perturbation initialization
method for quantifying error growth in quasigeostrophic flows.
It consists in initializing a unique perturbation having the closest
alignment with the most probable direction at each spatial loca-
tion and in verifying that its evolution characterizes the statisti-
cal behavior of error growth. This Alignment-based initialization
method is hereafter denoted as the AI method. In other words, is
the initial alignment of the perturbation an essential ingredient
for sustainable error growth? In order to test the statistical rel-
evance of this unique perturbation, error growth deduced from
its time evolution will be compared with error growth computed
from classical methods (Monte-Carlo, singular vectors and bred
vectors methods).

The present paper is organized as follows: Section 2 recalls
briefly analytical results deduced from the linearized momentum
equations that allow us to define the most probable structure; the
quasigeostrophic ocean model, the initialization algorithm for
the perturbation with the most probable structure as well as the
classical numerical methods (Monte-Carlo, singular vectors and
bred vectors methods) are described in Section 3; Section 4 is
devoted to the numerical results and in particular the different
error forecasts and their intercomparison in terms of spatial lo-
calization; and Section 5 provides a discussion of our results.

2. Lagrangian dynamics of the perturbation
velocity

2.1. Barotropic perturbation kinetic energy equation

Our approach for diagnosing initial error growth consists in
studying the dynamics of spatially localized interactions that al-
low a perturbation to extract kinetic energy from the unperturbed
control flow. In a barotropic context, these local interactions can
be studied from the perturbation kinetic energy equation, ob-
tained from the linearized version of the momentum equations

D̄K ′

Dt
= �E · �D − �u′ · �∇ p′

1. (1)

The notations used in the previous equation follow the formal-
ism of Mak and Cai (1989) who have analyzed the different
terms of the equation; bars denote quantities associated with
the control flow, while primes denote perturbations, �u is the
geostrophic velocity field, K ′ ≡ 1

2 | �u′|2 is the perturbation kinetic
energy, p1 is the ageostrophic pressure and let us emphasize that
D̄
Dt ≡ ∂/∂t + (�̄u · �∇) is the control flow Lagrangian derivative
and that our framework is intrinsically Lagrangian. Furthermore,
the vectors �E and �D are defined by

�E ≡
{

1

2
(v′2 − u′2), −u′v′

}
,

�D ≡ (∂x ū − ∂y v̄, ∂x v̄ + ∂y ū), (2)

Tellus 56A (2004), 5



PREDICTING AREAS OF SUSTAINABLE ERROR GROWTH 443

x

u’

DE

θ

π/2−2φ
π+2θ

π/2+ζ ’

’

’

_

Fig 1. Definition of the angle ζ ′.

and they respectively characterize the perturbation anisotropy
and the control flow deformation field. The scalar product be-
tween �E and �D that appears in eq. (1) is the so-called barotropic
extraction term; it allows the perturbation to extract kinetic en-
ergy from the control flow. The other term in the rhs of (1) is the
perturbation ageostrophic pressure work and it redistributes per-
turbation kinetic energy spatially. As the source of kinetic energy
error growth in a barotropic context is due to �E · �D, our analytical
approach focuses on this term. We use the same notations as in
RHK concerning the angles of �u′, �E and �D with the x-axis and the
different definitions are summarized in Fig. 1. The deformation
vector �D is decomposed into its modulus (usually called strain
rate) and its angle as �D = σ̄ (cos(π/2 − 2φ̄), sin(π/2 − 2φ̄)). As
the angle θ ′ denotes the angle of �u′ with the x-axis, the �E vec-
tor can be written as �E = K ′(cos(π + 2θ ′), sin(π + 2θ ′)) and its
angle with the x-axis is π + 2θ ′. The previous definitions allows
to define the angle

ζ ′ ≡ 2θ ′ + 2φ̄, (3)

which is directly linked to the relative angle between �E and �D
(Fig. 1) and the extraction term can thus be written as �E · �D =
−K ′σ̄ sin ζ ′. Eq. (1) can be written in a Lagrangian exponential
form as

1

K ′
D̄K ′

Dt
= −σ̄ sin ζ ′ +

�u′ · �∇ p′
1

K ′ . (4)

In the previous equation, the unique variable depending on
the perturbation structure that appears in the extraction term
(−σ̄ sin ζ ′) is the angle ζ ′. It shows the crucial importance of ζ ′

to quantify at each time, the rate of perturbation kinetic energy
extraction. As shown in the following paragraph, information
concerning the time evolution of ζ ′ can be obtained analytically.

2.2. The Lagrangian orientation equation

From the linearized momentum equation, two equations can be
derived; one is the perturbation kinetic energy eq. (1) and has
been intensively used in the litterature to explore the control

flow/perturbation interaction, and the other is the orientation
equation which has been analyzed in RHK. The orientation equa-
tion describes the dynamics of the perturbation velocity vector
orientation and can be written in terms of the angle ζ ′ as shown
in RHK. By projecting the perturbation ageostrophic pressure
gradient on the orientation equation, the following useful ap-
proximate form for this equation can be deduced

D̄ζ ′

Dt
= σ̄ (r + cos ζ ′). (5)

The parameter r has been introduced by Lapeyre et al. (1999) for
studying potential vorticity gradient dynamics. It depends solely
on the control flow properties and is defined as

r ≡ ω̄ + 2 D̄φ̄

Dt

σ̄
, (6)

where ω̄ is the relative vorticity, and −2 D̄φ̄

Dt is the rotation rate
of the deformation vector �D along a Lagrangian path.

Let us briefly summarize the results of RHK concerning the
fixed points of the orientation eq. (5). The fixed points of eq. (5)
satisfy the property D̄ζ ′

Dt = 0 and correspond to an angle ζ ′ that
will not evolve rapidly along a Lagrangian path. There are two
fixed points determined by ζ r

± ≡ ± arccos(−r ), one (ζ r
−) imply

kinetic energy extraction from the control flow to the perturba-
tion whereas the other (ζ r

+) leads to loss of perturbation kinetic
energy. It means that the perturbation structure is “in equilib-
rium” with the control flow deformation field. RHK have shown
that ζ r

± characterize the structure of the perturbations that have
grown in the past. More specifically, a Monte-Carlo method was
used to prove that ζ ′ is statistically close to ζ r

− in regions of
strong extraction ( �E · �D > 0, called hereafter the productive re-
gions) and close to ζ r

+ in regions where the conversion term is
negative ( �E · �D < 0, called hereafter the destructive regions).
Let us emphasize that such Lagrangian equilibrium orientations
ζ ′ = ζ r

± notably differ from the instantaneous optimal orienta-
tion ζ ′ = −π/2 that is predicted by singular vectors approach
for the case of spatially and temporally complex flows. In other
terms, such orientations of the perturbation velocity vector dif-
fer from the dilatation and contraction axes of the control flow
deformation field. In the following sections, we attempt to link
the sustained phase of growth which characterizes perturbations
that have grown in the past (in contrast with the transient growth
of singular vectors) with the Lagrangian equilibrium determined
by ζ r

± which leads to a sustained extraction (or sustained destruc-
tion) along a Lagrangian path.

3. Numerical model and methodology

3.1. Model and control flow

In the present study, we consider the classical oceanic problem
of a wind-driven double gyre with a 6-layer quasigeostrophic
code in a rectangular basin. The numerical code is presented
in appendix C of RHK, or with more details in Schmitz and
Holland (1986) and Barnier et al. (1991) and is not recalled
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Fig 2. Control flow along the jet
(streamfunction in the first layer). The
notations A and Z correspond to two areas
defined by the two boxes plotted in the
figure.

here. As shown in Fig. 2, the flow is characterized by a strong jet
that separates the southern anticyclonic gyre from the northern
cyclonic one. The jet has meanders which can detach and form
eddies that travel westward. In the next sections, we will study
the initial error growth for this control flow and will focus on
the limited area A covering the mid-basin and end part of the jet
(see Fig. 2) because of its more varied and turbulent dynamical
structures.

3.2. A new initialization method based on the
perturbation velocity orientation

The principle of our method uses the recent results of RHK
recalled in Section 2 of the present paper. The key idea is to
initialize a perturbation whose structure corresponds to the most
probable one of all the perturbations that have grown in the past,
i.e. the structure determined at each grid point by the fixed points
ζ r

± of the Lagrangian orientation eq. (5). The aim is to obtain
an algorithm for initializing a perturbation based on the sole
knowledge of the control flow properties at initial time. The prob-
lem therefore amounts to building a perturbation streamfunction
from the knowledge of the fixed points ζ r

±. This will require
several steps because (i) RHK theory does not analytically pre-
dict the location of the regions of production and destruction of
perturbation kinetic energy in terms of the control flow proper-
ties, (ii) alignment dynamics provide a direction which is only
defined modulo π , and lastly (iii) the perturbation velocity field
has to be divergenceless. Thus, the first stage is to detect (step
(i)) the location of regions of kinetic energy production and de-
struction in order to choose the right fixed point ζ r

± at each grid
point and to obtain the right value for ζ ′; the second step (ii) con-
sists in invoking continuity properties to obtain the orientation
of �u′. The last step (iii) is to obtain the perturbation streamfunc-
tion by knowing the orientation of �u′. In contrast with Section 2
based on mathematical evidences, the constraints leading to the
determination of steps (i) to (iii) of the algorithm use heuristic
results that are documented in appendix A. The three steps are
detailed hereafter and it should be stressed that these additional
stages of the initialization method are not independent and are
actually necessary for obtaining the appropriate alignment of the
perturbation.

3.2.1. (i) Determining regions of production and destruction
of kinetic energy. The theory of Section 2 does not provide infor-
mation on the location of the regions of production and destruc-
tion of kinetic energy. However, the statistical numerical results
presented in Appendix A for perturbations that have grown in
the past indicate that regions of production (and of destruction)
tend to be located in specific regions of the control flow. In our
simulations, the sign of the Lagrangian rate of change of the
control flow kinetic energy D̄K̄

Dt = −�̄u · �∇ p̄1, or in other words
the sign of the control flow acceleration, corresponds approxi-
mately in terms of spatial scales and location to the sign of the
conversion rate �E · �D. These results are consistent with those
found by Snyder and Hamill (2003) and Snyder et al. (2003) in
which it is shown that the perturbations that have grown in the
past vary on a length scale comparable to that of the control flow.
Following these heuristic results, the constraint imposed in our
algorithm is the following

ζ ′ ≡
{

ζ r
− if − �̄u · �∇ p̄1 > 0

ζ r
+ if − �̄u · �∇ p̄1 < 0.

(7)

This statistical result can be physically interpreted as follows:
along a Lagrangian path, in regions where the jet accelerates,
i.e. where the control flow gains energy ( D̄K̄

Dt > 0), it can re-
lease energy to the perturbation while in regions where the jet
decelerates, it takes energy from the perturbation.

3.2.2. Step (ii): continuity properties. The constraint (7) do
not define ζ ′ at each grid point as the fixed points ζ r

± exist only
in regions where |r | < 1. Which value of ζ ′ should be initialized
in regions where fixed points do not exist? Our choice is to in-
voke the continuity of the preferred orientations in regions where
|r | > 1. We therefore define ζ r

c± the continuity prolongation of
ζ r

± as follows: ζ r
c± ≡ ζ r

± = ± arccos(−r ) if |r | < 1, ζ r
c± ≡

± π if r ≥ 1 and ζ r
c± ≡ 0 if r ≤ − 1. We remark that the val-

ues ζ r
c± in regions where |r | > 1 correspond to values implying

neither production and nor destruction. As ζ ′ is well defined and
depends on the control flow structure as well as the angle 2φ̄, we
deduce from eq. (3) that 2θ ′ depends on it too. This information
gives only the direction of �u′ as θ ′ is known modulo π ; θ ′ is
either equal to 1

2 (ζ ′ − 2φ̄) or to 1
2 (ζ ′ − 2φ̄) + π . A continuity

property at the top of the meanders can be invoked to remove the
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orientation ambiguity and it leads to the following definition of
the angle θ ′ of the perturbation (denoted θa)

θa ≡
{

1
2 (ζ r

c− − 2φ̄) if − �̄u · �∇ p̄1 > 0
1
2 (ζ r

c+ − 2φ̄) + π if − �̄u · �∇ p̄1 < 0.
(8)

3.2.3. Determination of perturbation streamfunction. The
previous step of the algorithm defines exactly the angle θ ′ of
the perturbation velocity vector �u′ with the x-axis, from which
we have to determine the perturbation streamfunction ψ ′. No
information is given on the modulus of �u′. Our choice is to ini-
tialize a perturbation whose kinetic energy is space-filling, i.e.
with the same energetic weight at each grid point, | �u′| = 1. The
reason is that, as no assimilation is taken into account, the un-
certainties on the initial conditions are the same in all regions.
Furthermore, this avoids one of the recurrent flaw of the total
energy singular vectors which are excessively localized in one
or two specific unstable regions.

We look for a streamfunction field such as �u′ = �ua ≡
(cos θa, sin θa). It can be obtained by applying the following
operation ψ ′ = 	−1(∂ x sin θa − ∂ y cos θa) where 	−1 designs
the inverse of the horizontal Laplacian. However, there is no rea-
son apriori that �ua is a non divergent vector and that −∂ y ψ ′, ∂ x

ψ ′ equals �ua . By following the ideas of Jimenez et al. (1993),
one method to minimize the divergent part of �ua in dynamically
relevant regions (i.e. regions where the jet is energetic in our
case) is to resolve the following problem

	ψai = ∂x sin θa − ∂y cos θa if |�̄u| > |�̄u|max/p

	ψai = 0 if |�̄u| < |�̄u|max/p. (9)

The threshold chosen in our model is p = 7 (other values of p
∈ [5, 10] have been also tested and lead to the same results).
The streamfunction ψai obtained by resolving the system (9)
is called hereafter the Alignment-based Initialization mode and
denoted AI. The use of the threshold allows us to initialise the
streamfunction ψai such as the angle of its velocity vector with
the x-axis, θai, is close to the angle we wanted to initialize θa

(see Appendix A for the consistency of the algorithm). The other
consequence of the threshold is to initialize a perturbation ψai

which is energetic where the control flow is itself energetic. This
property is also a characteristic of the perturbations that have
grown in the past as shown by Snyder and Hamill (2003) and
Snyder et al. (2003).

3.3. Classical initialization methods

3.3.1. The Monte-Carlo method. Random perturbations are
initialized by applying a white noise for the horizontal potential
vorticity gradient in order to obtain a k−3 spectrum for the kinetic
energy field. The exact algorithm is described in appendix D of
RHK.

3.3.2. The singular vector method. The leading singular vec-
tors used in the following sections are computed to maximize
the amplification rate of a given norm within the area A for an
optimization time of 10 days. The leading singular vector is the

first eigenvector of the matrix S−1 R∗(T ) P A S R(T ) (see for
example, Buizza et al. (1993) or Farrell and Ioannou (1996)),
where R(T ) is the linear propagator for T = 10 days, R∗(T ) is
its adjoint for a given norm, S is the matrix associated to the
change of norm and P A represents the local projection operator
on the area A. The local projection operator was introduced by
Barkmeijer (1992) and Buizza and Palmer (1995). The norms
used are total energy, potential enstrophy and potential palenstro-
phy (r.m.s of the potential vorticity gradient) and the correspond-
ing singular vectors are respectively denoted SVte, SVens and
SVpalens.

3.3.3. Simulation of “bred modes”. In order to characterize
the behavior of our AI mode, an ensemble of “simulated bred
modes” have been initialized as follows: ten days before the ini-
tial time of the forecast (t = −10 days), random perturbations
have been added to the control flow (the same random pertur-
bations defined in Section 3.3.1) and perturbed runs of the fully
non linear code lead to perturbations hereafter called “simulated
bred modes” (by subtracting perturbed runs from the control run
at t = 0). They therefore correspond to a single rescaling cycle
(at t = 0). Let us remark that since no assimilation scheme has
been considered, the control flow is not modified at the rescaling
step.

4. Numerical results

4.1. Intercomparison of the different initial structures

Let us now intercompare the different initial structures obtained
by the AI method and the singular vector method.

Let us first focus on the SVs spatial scales. It is a well-known
property of the singular vector method that a norm associated
with a smaller scale structures will correspond to a larger scale
SV. This property is clearly exhibited in Fig. 3, as SVpalens

(Fig. 3c) has a larger scale than SVens (Fig. 3b) which itself has
a larger scale than SVte (Fig. 3a). The mathematical explanation
is given by Moore and Mariano (1999), who also show more
specifically why for very long optimization times the potential
vorticity of SVpalens (resp. SVens) equals the streamfunction of
SVens (resp. SVte).

The structure of ψ te
SV (Fig. 3a) is very localized in a specific

region upstream of area A and its isolines clearly tilt against the
shear. Strong similarities exist between the total energy SVs of
our model and those computed by Moore and Mariano (1999)
(see their Fig. 5). This configuration shows that both the angle
and the modulus of SVte are optimized to extract energy from
the control flow in the specific region upstream of the area A.
The structure of ψ ens

SV (Fig. 3b) is by contrast with ψ te
SV, localized

at the end part of the area A.
Figure 4 shows the structure of the AI mode streamfunction

ψai initialized from the control flow shown in Fig. 2. Its structure
is quite different from the singular vectors structures, as its spatial
scale is larger than SVte and smaller than SVens. The mode in
Fig. 4 is characterized by a succession of minima and maxima
along the jet core, precisely in regions where the velocity of the
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Aa)

Ab)

Ac)

Fig 3. Zoom along the jet of the initial
leading singular vectors streamfunctions for
an optimization time of ten days for : (a)
total energy (ψ te

SV), (b) potential enstrophy
(ψens

SV) (c) and potential palenstrophy
(ψpalens

SV ) norms.

jet is the strongest. This type of structure is quite different from
the streamfunction of SVte (Fig. 3) whose maxima and minima
are localized on both sides of the jet core. Furthermore, as we
have chosen | �u′| = 1 in our initialization algorithm, the AI mode
is uniformly energetic in regions where the velocity of the control
flow is strong.

4.2. Error growth

We will now intercompare the error fields within area A after
10 days obtained for three different methods: (1) an ensem-
ble mean Monte-Carlo forecast computed with initially N =
100 random perturbations, (2) a single error forecast computed
with the leading singular vector of three norms (SVte, SVens and
SVpalens), and (3) a single error forecast computed with our AI
mode. All the perturbations are rescaled initially such that each
one corresponds to an initial error of 10% in the kinetic energy

norm. They are added to the control flow to form different ini-
tial conditions of the model. Different trajectories of the non
linear model are thus obtained; after 10 days, the difference be-
tween each perturbed run and the control run provides a single
error forecast. Error forecasts are computed for the velocity error
field. Single error forecasts, such as those obtained from the SV
and AI methods, correspond to the value of | �u′| the modulus of
the perturbation velocity at each grid point, and are respectively
noted FSV (u′) and FAI(u′), while the MC forecast is obtained
by computing the root-mean-square of the perturbation veloci-

ties, FMC (u′) ≡
√

1
N

∑
i u′2

i . The MC error field is considered as
the ground truth error field against which single error forecasts
initialized with the SVs and AI methods will be intercompared.

Figure 5 shows the spatial localization of the different error
forecasts. Let us look at the MC forecast (Fig. 5a), there is a
strong growth of kinetic energy error along the jet, the center of
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A

Fig 4. Streamfunction perturbation at t = 0
in the first layer for the AI mode ψai.

the detached eddies and at the end part of the jet. The SVte er-
ror forecast (Fig. 5b) does not capture globally the error growth
deduced from the ensemble Monte-Carlo prediction, as it is char-
acterized by a strong error growth at the beginning of area A,
and not at all at the end part of the jet or around the eddies. This
characteristic is due to the fact that SVte is initially too much lo-
calized in a specific region upstream of the area A as mentioned
previously (see Fig. 3a). For the SVens forecast (Fig. 5c), the
error growth along the jet and around the main isolated eddy is
visible but not as strong as for the MC forecast, while at the end
part of the jet maxima of error growth are not always spatially
correlated with those of the MC forecast. The SVpalens forecast
(Fig. 5d) captures very well the ensemble error field at the end
part of the jet and at the center of the two isolated eddies but not
along the jet. Finally, the AI error field (Fig. 5e) has the same
maxima as those of the MC error field along the jet, and also
at the main eddy center but the two fields do not correspond
very well at the end part of the jet. Globally, the SVpalens forecast
(Fig. 5d) and the AI forecast (Fig. 5e) are thus much more repre-
sentative of the MC forecast than the two other single forecasts.
Let us now define the correlation of each single forecast j with
the ensemble mean error field

C( j) =
∫∫

A F ′
j (u

′).F ′
MC (u′)√∫∫

A F ′
j (u′)2.

√∫∫
A F ′

MC (u′)2
, (10)

where the prime quantities are deviations from the spatial aver-
age over the domain A. The correlations of the SVte (Fig. 5b),
SVens (Fig. 5c), and SVpalens (Fig. 5d) forecasts with the MC
forecast (Fig. 5a) are respectively C(SVte) = 0.48, C(SVens) =
0.67 and C(SVpalens) = 0.75. The correlation of the AI forecast
(Fig. 5e) with the MC forecast is C(AI) = 0.78. So we conclude
that for the present control flow, the AI forecast yields a similar
score to the palenstrophy SV forecast and is much better than the
total energy and enstrophy SV forecasts. However how do these
modes perform when compared to a random perturbation initial-
ization forecast? This can be assessed by the mean correlation
of the MC ensemble defined by

C = 1

N

∑
i

C(i), (11)

with N = 100. At T = 10 days, for this control flow, C = 0.67.
On the one hand, CSVpalens > C , CAI > C and on the other hand,
CSVte < C , Cens < C , so the SVpalens forecast and the AI forecast
give a better representation of error growth than a random one
but the total energy and the enstrophy SV do not.

All the previous error forecasts are done for a specific control
flow. Are the previous results robust if we change the control
flow? To answer this question, the same error forecasts are com-
puted for 20 different control flows. The correlations between the
SVs forecasts and the MC forecast, C(SVens) and C(SVpalens),
and between the AI forecast and the MC forecast C(AI), are
shown for all these control flows in Fig. 6 as well as the mean
correlation C . As for each control flow, the correlation between
the total energy singular vector and the MC forecast C(SVte) is
inferior to C , the curve corresponding to C(SVte) is not shown in
Fig. 6. The total energy SVte is not at all relevant and is typically
less relevant than a random perturbation. This result could be
quite surprising, but is due to the fact that SVte is very local-
ized initially whereas the random perturbations are more space-
filling. For this specific diagnostic based on spatial localization
of error growth, the leading total energy singular vector is not
performant. It could be that secondary singular vectors for this
norm will excite other unstable regions and a few energy SVs
are needed to better represent the spatial distribution of the mean
error field. However, since our AI mode is unique, we have com-
pared it with the leading singular vector. The curves correspond-
ing to C(SVens) (dashed line) and C(SVpalens) (dash-dotted line)
are generally above the bold continuous curve corresponding to
C . SVens and SVpalens are thus generally more relevant than a
random perturbation, and the SVpalens structure leads sometimes
to strong correlations with the MC forecast. However, for some
specific control flows, the two modes, SVens and SVpalens, yield
bad scores. Indeed, the C(SVpalens) curve is under the C curve for
control flows numbered 5, 13 and 18, and C(SVens) is inferior to
C for control flows numbered 8, 13 and 15. This means that the
two singular vectors for the potential enstrophy and palenstrophy
norms are not systematically relevant for all control flows, even
if they can give very good scores, sometimes better than the AI
mode, for specific control flows. We have checked that singular
vectors leading to bad scores are initially characterized by a too
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Fig 5. Spatial localization of kinetic energy error growth at t = 10 days in the first layer within the area A (see Fig. 2 for its definition); (a) ensemble
Monte-Carlo forecast F MC(K ′), (b) total energy SV forecast F te

SV(K ′), (c) potential enstrophy SV forecast Fens
SV(K ′), (d) potential palenstrophy SV

forecast Fpalens
SV (K ′) and (e) AI forecast F AI(K ′).

strong spatial localization in a specific region. We also note that
the C(AI) curve (thin continuous line) is systematically above C
for all control flows and that the difference C(AI) − C is of the
order of the standard deviation of the random forecasts correla-
tions with the mean correlation, which on average is 0.06. By
contrast, the C(SVpalens) curve is sometimes below the C curve as
mentioned previously, even if C(SVpalens) is largely above C(AI)
for some cases. The AI forecast is systematically performant to

diagnose the ensemble mean error forecast which is not the case
of SVs forecasts. This last result clearly proves the relevance of
the AI method to localize systematically areas of strong error
growth. Another important point to note concerns the practical
interest of our AI approach; by contrast with the singular vectors
initialization method, the numerical cost of the AI mode initial-
ization method is negligible as it needs no additional run of the
model.
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Fig 6. Correlations of different error forecasts with the average
Monte-Carlo error forecast for 20 control flows; are represented the
mean correlation of the MC ensemble C (bold continuous line), two
different SV forecasts correlations C(SVens) (dashed line) and
C(SVpalens) (dash-dotted line) and the AI forecast correlation C(AI)
(thin continuous line).

4.3. Transient and sustainable growth

4.3.1. Time evolution of the different modes. Figure 7 shows
the time evolution of three different perturbation streamfunctions
corresponding to the AI mode (Figs. 7a and b), a “simulated bred
mode” (Figs. 7c and d) and the palenstrophy SV (Figs. 7e and
f) within the area A between t = 0 and t = 10 days. At final
time, the three structures (Figs. 7b , d and f) are similar not only
in terms of their spatial scales but also in terms of the structures
themselves; along the jet, the three structures are characterized
by a succession of negative and positive poles more or less en-
ergetic, and around the isolated eddies by two poles of opposite
signs. This is not the case at initial time for which the palenstro-
phy SV differs completely from the two other fields as previously
mentioned. By comparing now Fig. 7a with Fig. 7b, Fig. 7c with
Fig. 7d and Fig. 7e with Fig. 7f, it is clear that the AI mode and
the “simulated bred mode” structures undergo little modification
of their spatial patterns with time, whereas the palenstrophy SV
does. This change of spatial structures with time can be also no-
ticed for energy and enstrophy singular vectors (not shown here),
and is a classical result of the singular vectors structures. As for
SVpalens, the enstrophy SV has a much larger spatial scale at initial
time than at final time. Concerning the total energy SV, its ini-
tial horizontal structure strongly tilts against the horizontal shear
(Fig. 3a), and at final time (not shown here), its streamfunction is
characterized by a succession of positive and negative poles re-
lated to a succession of productive and destructive regions. The
rapid time evolution of the energy and enstrophy SVs spatial
structures are well known in the atmosphere since the works of
Molteni et al. (1996) and Buizza and Palmer (1995) and are char-
acteristics of rapid non modal transient growth. By contrast with
SVs structures, the AI mode and the “simulated bred mode” are
characterized by sustainable growth since the structures undergo

little changes with time. For example, the AI mode streamfunc-
tion has initially four poles along the jet (Fig. 7a) numbered from
1 to 4 which still exist at final time (Fig. 7b) with much larger
amplitudes. The same result holds for the structure numbered 5
which is localized around the largest isolated eddy; the structure
with two poles (a minimum and a maximum of streamfunction)
at initial time is still recognizable at final time. Error growth
along the eddy numbered 6 has disappeared at final time but cor-
responds to an eddy with initially less energy than the other one.
As previously said, even if these structures do not correspond to
an optimal configuration of growth (the poles along the jet are
structured with both productive and destructive regions), they
induce sustainable kinetic energy growth as in the case of “bred
modes” structures.

In order to illustrate the distinction between transient and sus-
tainable growth, the amplifications of the perturbation kinetic
energy between t = 0 and t = 10 days for the AI mode, a
“simulated bred mode”, an initially random perturbation and
the SVpalens are shown in Fig. 8. The curves corresponding to
the AI mode (continuous line) and the “simulated bred mode”
(dashed line) remain quite close to each other, their slopes do not
change much with time and even become constant and equal af-
ter about 4 days. This confirms our conclusions about Fig. 7 that
the AI mode evolution is similar to the “simulated bred mode”’s
one and that both characterize sustainable growth. Let us men-
tion that the amplification curve of the “simulated bred mode” in
Fig. 8 is not modified by choosing another perturbation among
the bred mode ensemble and the results are therefore robust (the
same remark being true for the initially random perturbation). By
contrast with the AI mode and the “simulated bred vector”, the
slopes of the amplification curves for the initially random pertur-
bation (dotted-line) and the SVpalens (dash-dotted line) strongly
change with time and therefore both are characterized by tran-
sient growth. The SVpalens (as well as the other singular vectors)
has a stronger transient growth than the initially random pertur-
bation which is not astonishing as by definition, the SV method
characterizes explosive growth.

A detailed description of the transient phase of growth for ini-
tially random perturbations can be found in Snyder et al. (2003).
Mechanisms by which the different Singular Vectors of different
norms grow initially are developed in Snyder and Joly (1998)
and Snyder (1999). The different behaviors of the singular vec-
tors according to the chosen norm are recovered in our case.
During their transient growth, the enstrophy and palenstrophy
SVs have an initially large spatial scale and move toward a scale
comparable to the control flow. Transient growth for these two
norms are not related to a local extraction term. By contrast,
the total energy SV (see Fig. 3) has an optimal configuration
characterized by an initial strong tilt against the shear compa-
rable to classical structures of total energy SVs (see Fig. 5 of
Moore and Mariano, (1999) or Fig. 7 of Farrell (1990)). The non
stationary character of the total energy SV structure can be inter-
preted in a Lagrangian point of view; the optimal configuration
of kinetic energy extraction, i.e. when �E and �D are orthogonal
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Fig 7. Time evolution of the streamfunction of differents modes within the area A (see Fig. 2 for its definition) between t = 0 and t = 10 days; (a)
and (b) correspond to the AI mode, (c) and (d) to a “simulated bred mode”and (e) and (f) to the potential palenstrophy singular vector.
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Fig 8. Amplifications of the perturbation kinetic energy | �u′ |
| �u′ |0

within

the whole basin between t = 0 and t = 10 days for the AI mode
(continuous line), a “simulated bred mode” (dashed line), an initially
random perturbation (dotted line) and the potential palenstrophy
singular vector (dash-dotted line).

(ζ ′ = −π/2) do not correspond to the Lagrangian equilibrium
ζ ′ = ζ r

− in the general case where r �= 0 and its angle will there-
fore evolve rapidly with time.

4.3.2. Principal component analysis at t = 10 days. The Prin-
cipal component analysis is used in the present section as an
other measure to prove the similarity between the “simulated
bred modes” and the AI mode structures at the forecast time (t
= 10 days). For each considered ensemble, the error covariance
matrix is defined as follows

COV(k, l) = 1

N

∑
i

q ′
i (k)q ′

i (l), k, l ∈ Z (12)

where k and l correspond to two grid points belonging to the
given area Z, N is the number of perturbations in the ensemble
and q ′ is the perturbation potential vorticity. The first eigenvector
of the error covariance matrix can be therefore considered as
the most probable structure for the perturbations belonging to
the studied ensemble. Two ensembles are considered in what
follows, a Monte-Carlo and a “bred mode” ensemble. The error
covariance matrix for each of these two ensembles is computed
within a limited area Z localized around the jet core (see Fig. 2
for its location). This smaller domain Z has been chosen because
the eigenvectors of the error covariance matrix computed in this
specific region converge toward a given structure for N = 100
whereas we found no convergence when a principal component
analysis is performed for the whole area A for example. The
latter result appears to be due to the dynamical independence
between the different parts of the flow, i.e. between the jet core,
the isolated eddies, and the end part of the jet.

Figures 9a , b and c correspond respectively to the potential
vorticities of the AI mode, of the first eigenvector of the error

Za)

Zb)

Zc)

Fig 9. Potential vorticity q ′ at t = 10 days within the area Z located
along the jet core (see Fig. 2 for its definition) for (a) the AI mode and
(b) and (c) respectively the first eigenvectors of the error covariance
matrix for the “bred mode” and Monte-Carlo ensembles.

covariance matrix for the “bred mode” ensemble (denoted as
first BM eigenvector) and of the first eigenvector of the error
covariance matrix for the Monte-Carlo ensemble (denoted as
1st MC eigenvector). For each ensemble, the first eigenvector
explains 24% of the variance while the second one approximately
15%. The behavior of the two ensembles is therefore mainly
captured by the first eigenvector. By comparing Fig. 9b with Fig.
9c, it is clear that the first MC eigenvector has a larger spatial
scale than the first BM eigenvector (almost twice larger) as the
latter is characterized by four poles of opposite signs along the
jet whereas the first one by only two poles. It has been found
(not shown here) that the scale and the structure of the first
BM eigenvector (a succession of four poles) appears for the
fourth MC eigenvector but the latter explains only 9% of the
variance of the Monte-Carlo ensemble. There therefore exists a
net difference between the BM and MC ensembles in terms of
their spatial structure at forecast time. The scale of the AI mode
(Fig. 9a) is comparable with that of the 1st BM eigenvector
as it has also four poles of opposite signs along the jet. The
projection of the AI mode on the 1st BM eigenvector is 0.33.
Even if this value is not very strong, it has to be compared with
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the projection of the AI mode on the 1st MC eigenvector which
is approximately zero. From this principal component analysis,
we conclude that the AI structure is closer to a “bred mode”
structure than a Monte-Carlo structure at forecast time and this
supports the conclusions of Section 4.3.1. We have checked that
these results do not change by considering other control flows.

5. Discussion

A new perturbation initialization method to quantify error growth
due to inaccuracies in the initial conditions of the model state
has been developped and intercompared with classical numerical
methods, the Monte-Carlo approach, the Bred Mode method and
the Singular Vector method.

This new method is based on recent results on Lagrangian
dynamics of the perturbation velocity vector in barotropic quasi-
geostrophic flows. The essential ingredient comes from the La-
grangian barotropic extraction term �E · �D that allows a perturba-
tion to extract energy from the basic flow, and more specifically
from the angle (denoted π/2 + ζ ′) between the perturbation
�E vector and the deformation vector of the control flow as its
value determines the sign of the barotropic extraction term. The
preferred values of the angle ζ ′ can be found by analyzing the
Lagrangian formulation of the orientation equation of the per-
turbation velocity vector. It has been shown in a previous paper
(RHK) that the most probable values of ζ ′ are composed of a cou-
ple (ζ r

−, ζ r
+) corresponding to the fixed points of the orientation

equation, i.e. the values of ζ ′ for which the Lagrangian rate of
change is zero. The proposed AI method consists in initializing
a unique perturbation whose streamfunction isolines direction
is given at each grid point by one of the two most probable di-
rections ζ r

− and ζ r
+. The choice between ζ r

− and ζ r
+ is given by

the sign of the control flow Lagrangian acceleration which leads
to a perturbation with a spatial scale comparable to that of the
control flow. The perturbation can be therefore prescribed solely
from the knowledge of the stirring properties of the control flow
at the initial time of the forecast, a method which is conceptually
and practically interesting (negligible numerical cost).

Let us now recall the results concerning the performance of the
AI mode to diagnose areas of kinetic energy errors. The single
AI forecast gives for all control flows a good spatial correlation
(significantly better than a random initialization forecast) with
the ensemble mean Monte-Carlo forecast. On average, the AI
forecast yields the same correlation as the most relevant singu-
lar vectors forecast, the palenstrophy SV forecast. However, an
examination of each case shows that the AI forecast is system-
atically relevant for all control flows whereas the palenstrophy
SV forecast leads sometimes to very good scores and sometimes
to very bad ones. Let us note finally that the AI forecast was
found to be still relevant by comparing it with different types of
MC methods in which random perturbations with small scales as
well as large scales have been tested. Our results are not therefore
dependent on the MC method chosen.

The second main conclusion of the paper is that the AI mode
evolution provides a rationale of the perturbations that have
grown in the past (i.e. before the initial time of the forecast)
such as the “simulated bred vectors” used in the present paper.
We have shown that the AI mode and the “simulated bred mode”
have similar patterns and that these patterns do not change very
much with time. At the forecast time, a principal component
analysis around the jet core has shown that the AI mode struc-
ture is closer to a “simulated bred vector” structure than to an
initially random perturbation one. Furthermore, by plotting the
amplification of kinetic energy, it has been shown that the AI
mode time evolution is characterized by a sustained phase of
growth comparable to that of a “simulated bred mode”. The
sustained phase of growth characteristic of the perturbations
that have grown in the past can be therefore viewed in terms
of a Lagrangian equilibrium of the perturbation velocity vec-
tor orientation in the strain axis. It should be contrasted with
initially random perturbations and singular vectors behaviors
which exhibit transient growth with a rapid time evolution of
their spatial structures (cf. Snyder and Joly, 1998; Snyder et al.,
2003).

As no assimilation procedure has been simulated in the present
paper, the uncertainties in the initial conditions were considered
to be the same in the whole domain. This is the reason why
the choice | �u′| = 1 has been implemented in the AI mode ini-
tialization algorithm in the regions where the jet is energetic.
By contrast, “simulated bred modes” are not everywhere ener-
getic in these regions, and this is the main difference with the
AI mode. An important point to note is that the robustness of
our method has been also tested by modifying the angle but
not the modulus of �u′. For example, we have initialized a per-
turbation with the optimal configuration ζ ′ = −π/2 instead of
the constraint ζ ′ = ζ r

±, i.e. a perturbation such as �E and �D are
orthogonal at each grid point. The scores obtained with this per-
turbation in terms of spatial correlations were significantly infe-
rior to C for some control flows. It means that the performance
of our AI mode is not due simply to the energy space-filling
character of the method but rather to the values of the angle ζ ′

determined with the fixed points of the orientation equation. It
has to be mentioned however that all the steps of the algorithm
are necessary to initialize the right orientation for �u′. Finally,
the AI method could be improved in particular for the heuristic
step leading to the localization of the productive and destruc-
tive regions of kinetic energy. This step has been obtained by
examining the time evolution of small amplitudes random per-
turbations and it would be better to replace it by a mathematical
rationale.

A logical question that arises from the present study is: what
would occur in a more practical situation when an assimilation
procedure is taken into account and initial uncertainties are not
the same everywhere. A feasible study that takes into account
assimilation would be to modify the modulus of �u′ according
to the different uncertainties given by the error analysis. In this
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Fig 10. Spatial localization inside area A of the sign (a) of the ensemble mean barotropic extraction term 〈 �E · �D〉 for 100 independent realizations
and (b) of the Lagrangian control flow acceleration −�̄u · �∇ p̄1. Regions in black (resp. in gray) correspond to regions where either 〈 �E · �D〉 or
−�̄u · �∇ p̄1 is positive (resp. negative). Signs of the two quantities are shown only in regions where |�̄u| > |�̄u|max/5 and |ω̄/σ̄ | < 1. P and D denote
regions where the quantity is respectively positive and negative.

context, an ensemble prediction could be initialized without any
expensive numerical cost by giving different initial weights to
the modulus of �u′ and by keeping the same angle of �u′ with the x-
axis, i.e. θa , given by the fixed points of the orientation equation
and obtained in Section 3.2.
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7. Appendix: Details on the algorithm
7.1. Determining regions of production and destruction

of kinetic energy

The determination of the regions of production and destruction of
kinetic energy has been established numerically using a Monte-
Carlo approach. 100 random perturbations of small amplitude
have been initialized with the same Monte-Carlo method as in
RHK and are added to the control flow shown in Fig. 2. The per-
turbations evolve for 10 days (linearly due to their initially small
amplitude). Figure 10a shows the sign of the ensemble mean ex-
traction term 〈 �E · �D〉 (〈.〉 denotes the ensemble mean computed
with 100 independent realizations) after 10 days within the area
A in regions where both the control flow is very energetic and
its strain rate is stronger than its relative vorticity (| ω̄

σ̄
| < 1).

The last threshold corresponds approximately to regions

where |r | = | ω̄+2 D̄φ̄
Dt

σ̄
| < 1 (i.e. regions where the fixed points ex-

ist) and has been preferred to the latter because of its more simple

spatial visualization. Black regions correspond to regions where
the conversion rate is statistically positive, i.e. characterize pro-
ductive regions whereas gray regions correspond to destructive
regions. Perturbation structures along the jet core are charac-
terized by a succession of productive and destructive regions
(respectively noted by P and D) in which productive regions are
localized downstream of the top of meanders whereas the de-
structives ones are upstream. Around the isolated eddy located
in the south of the jet core, there are two productive regions and
two destructives ones.

The sign of the extraction term previously diagnosed has been
compared with different quantities depending on the control flow
structure. The quantities to be tested are those involved in the
control flow kinetic energy equation under its Lagrangian form,
D̄K̄
Dt = −�̄u · �∇ p̄1. The Lagrangian rate of change of the control

flow kinetic energy (also called hereafter control flow accelera-
tion), −�̄u · �∇ p̄1, was computed and its sign plotted in Fig. 10b.
The quantity −�̄u · �∇ p̄1 is clearly characterized by an alternation
of sign along the jet core, with a plus sign localized downstream
of the top of each meander and a minus sign localized upstream.
Even if the signs of 〈 �E · �D〉 (Fig. 10a) and −�̄u · �∇ p̄1 (Fig. 10b)
are not entirely correlated along the jet, their properties of spatial
localization with regard to the meanders are the same: the plus
sign is downstream of the top of the meander whereas the minus
sign is upstream. If we look at the isolated eddy in the left lower
part of the domain A, two regions satisfy −�̄u · �∇ p̄1 > 0 and two
others are such as −�̄u · �∇ p̄1 < 0. The sign of −�̄u · �∇ p̄1 change
four times around the eddy as well as the sign of 〈 �E · �D〉 even if
their signs are not spatially correlated in this specific region. The
spatial distribution of the signs of the two quantities bears some
resemblance, especially in terms of spatial scales. The knowl-
edge of the sign of −�̄u · �∇ p̄1 will allow us to initialize the right
fixed point at each grid point.
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Fig 11. PDF of ζ ai − ζ a in regions where |�̄u| > |�̄u|max/7 for the
control flow shown in Fig. 2.

7.2. Check on the consistency of the algorithm

Let us now test if the direction of the isolines of ψai (the stream-
function which is effectively initialized) is actually equal or close
to the direction we want to initialize, i.e. ζ a . The angle ζ ′ de-
duced from the structure of ψai is denoted ζ ai, and it is compared
with ζ a by plotting in Fig. 11 the PDF of ζ ai − ζ a = 2(θai −
θa) in regions where |�̄u| > |�̄u|max/7. The PDF is not a Dirac
function, ζ ai is not exactly equal to ζ a , because the vector �ua

has a divergent part, as anticipated. However, the PDF has a
strong peak for ζ ai = ζ a , meaning that ζ ai is statistically close
to ζ a in regions of dynamical interest. The conclusion is that at
most grid points, the structure determined by ζ a is effectively
initialized. We have therefore checked the consistency of our
algorithm.
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